Skip to main content

Advertisement

Log in

Examining some potential actions in mitigating gaseous emissions from vehicles, case study: Tehran

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Pollutant emission from vehicles is known as a major air pollution source in metropolitan areas. Efficiency of several solutions was quantified and compared to introduce the best solution for decreasing greenhouse gases and air pollutant emissions: (1) inspection and maintenance (I/M) of vehicles, (2) restriction of air conditioner usage, (3) injecting better quality fuel (removing sulfur), and (4) replacing older vehicles with new ones were modeled by International Vehicle Emissions (IVE) model as potential solutions. Restricting air conditioner usage makes an insignificant contribution in pollutants’ emission. The idle inspection/ maintenance system can reduce carbon monoxide (CO) and methane (CH 4) emission by about 10.7 and 3.8 %, respectively. The loaded I/M system reduces nitrogen oxides (NO x ), CO, volatile organic carbon (VOC), and CH 4 emission by 8.6, 11.5, 3.4, and 7.6 %, respectively. Effect of I/M programs depends on the types of vehicles and target pollutants needed to be reduced. Sulfur emission into the atmosphere would be reduced remarkably (about 98 %) if its concentration was reduced in fuels. Substitution of old vehicles with new vehicles makes a noticeable contribution in improving air quality (about 53 % reductions in CO, 52 % in VOC, and 58 % in CH 4 emission for light-duty vehicles). Analytical hierarchy process (AHP) was utilized to identify the most feasible solution for reducing air pollution. Fuel quality improvement and replacing old cars with newer ones are the most tangible solutions, respectively. This paper demonstrates that each policy has its own impact on emission and we can apply each of them in cases in which the pollutants concentrations are high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arhami M, Kamali N, Rajabi MM (2013) Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environ Sci Pollut Res 20:4777–4789. doi:10.1007/s11356-012-1451-6

    Article  CAS  Google Scholar 

  • Askariyeh MH, Arhami M (2013) Projecting emission reductions from prospective mobile sources policies by road link-based modelling. Int J Environ Pollut 53:87–106. doi:10.1504/IJEP.2013.058820

    Article  CAS  Google Scholar 

  • Atash F (2007) The deterioration of urban environments in developing countries: mitigating the air pollution crisis in Tehran, Iran. Cities 24:399–409. doi:10.1016/j.cities.2007.04.001

    Article  Google Scholar 

  • Ayala A, Brauer M, Mauderly JL, Samet JM (2012) Air pollutants and sources associated with health effects. Air Qual, Atmos Health 5:151–167. doi:10.1007/s11869-011-0155-2

    Article  CAS  Google Scholar 

  • Baldauf R, Watkins N, Heist D, Bailey C, Rowley P, Shores R (2009) Near-road air quality monitoring: factors affecting network design and interpretation of data. Air Qual, Atmos Health 2:1–9. doi:10.1007/s11869-009-0028-0

    Article  CAS  Google Scholar 

  • Banitalebi E (2014) Tehran’s gas emissions inventories for gasoline vehicles. FCE-93-MEF-10

  • Bayat R, Torkian A, Najafi MA, Askariyeh MH, Arhami M (2012) Source apportionment of Tehran’s air pollution by emissions inventory. :13–16

  • Bishop GA, Morris JA, Stedman DH, Cohen LH, Countess RJ, Countess SJ, Maly P, Scherer S (2001) The effects of altitude on heavy-duty diesel truck on-road emissions. Environ Sci Technol 35:1574–1578. doi:10.1021/es001533a

    Article  CAS  Google Scholar 

  • Bishop GA, Schuchmann BG, Stedman DH (2013) Heavy-duty truck emissions in the South Coast Air Basin of California. Environ Sci Technol 47:9523–9529. doi:10.1021/es401487b

    Article  CAS  Google Scholar 

  • Bulut E, Duru O, Keçeci T, Yoshida S (2012) Use of consistency index, expert prioritization and direct numerical inputs for generic fuzzy-AHP modeling: a process model for shipping asset management. Expert Syst Appl 39:1911–1923. doi:10.1016/j.eswa.2011.08.056

    Article  Google Scholar 

  • Cacciola R, Sarva M, Polosa R (2002) Adverse respiratory effects and allergic susceptibility in relation to particulate air pollution: flirting with disaster. Allergy 57:281–286. doi:10.1034/j.1398-9995.2002.1r3315.x

    Article  CAS  Google Scholar 

  • Chatzimouratidis AI, Pilavachi PA (2008) Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process. Energy Policy 36:1074–1089. doi:10.1016/j.enpol.2007.11.028

    Article  Google Scholar 

  • Cooper CD, Alley FC (2002) Air pollution control: a design approach, Waveland Press

  • Davis N, Lents J, Osses M, Nikkila N, Barth M (2005) Part 3: Developing countries: development and application of an international vehicle emissions model. Transp Res Rec: J Transp Res Board. :155–165. doi: 10.3141/1939-18

  • EPA U (2003) User’s Guide to MOBILE6. 1 and MOBILE6. 2. Environmental Protection Agency

  • Fujita EM, Zielinska B, Campbell DE, Sagebiel JC, Ollison W (2015) High-end exposure relationships of volatile air toxics and carbon monoxide to community-scale air monitoring stations in Atlanta, Chicago, and Houston. Air Qual, Atmos Health:1–13. doi: 10.1007/s11869-015-0345-4

  • Gass SI (1986) A process for determining priorities and weights for large-scale linear goal programming. J Oper Res Soc 37(8):779–785

  • Grahame TJ, Schlesinger RB (2010) Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence. Air Qual, Atmos Health 3:3–27. doi:10.1007/s11869-009-0047-x

    Article  CAS  Google Scholar 

  • Guttikunda SK, Goel R, Mohan D, Tiwari G, Gadepalli R (2015) Particulate and gaseous emissions in two coastal cities—Chennai and Vishakhapatnam, India. Air Qual, Atmos Health 8:559–572. doi:10.1007/s11869-014-0303-6

    Article  CAS  Google Scholar 

  • Halek F, Kavouci A, Montehaie H (2004) Role of motor-vehicles and trend of air borne particulate in the Great Tehran area, Iran. Int J Environ Health Res 14:307–313. doi:10.1080/09603120410001725649

    Article  CAS  Google Scholar 

  • Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, Gholampour A, Arhami M, Kashani H, Zare A (2015) Characterization of PAHs and metals in indoor/outdoor PM 10/PM 2.5/PM 1 in a retirement home and a school dormitory. Sci Total Environ 527:100–110. doi:10.1016/j.scitotenv.2015.05.001

    Article  Google Scholar 

  • Hui G, Zhang Q, Yao S, Wang D (2007) Evaluation of the International Vehicle Emission (IVE) model with on-road remote sensing measurements. J Environ Sci 19:818–826. doi:10.1016/S1001-0742(07)60137-5

    Article  Google Scholar 

  • IVE Model User’s Manual: Version 2.0 (2008). http://www.issrc.org. Accessed 10 Feb 2016

  • Izanlu H, Masoumi A (2015) I/M Program in Tehran. OE94/08/1-5/01

  • Karakitsios SP, Papaloukas CL, Kassomenos PA, Pilidis GA (2006) Assessment and prediction of benzene concentrations in a street canyon using artificial neural networks and deterministic models: their response to “what if” scenarios. Ecol Model 193:253–270. doi:10.1016/j.ecolmodel.2005.07.024

    Article  CAS  Google Scholar 

  • Khayyam H, Abawajy J, Jazar RN (2012) Intelligent energy management control of vehicle air conditioning system coupled with engine. Appl Therm Eng 48:211–224. doi:10.1016/j.applthermaleng.2012.04.050

    Article  Google Scholar 

  • Kholil RO, Tyagi A, Chatterjee S, Langhals H, Schmid T, Herman M, Zwiener M, Hofer A, Tahiruddin NSM, Ya’akub NAM (2013) Application of AHP method for selecting the best strategy to reduce environmental demage caused by non metallic mining case study in Gunungkidul regency, Yogakarta, Indonesia. Int J Environ Eng Sci Technol Res 1:98–109

    Google Scholar 

  • Lambert M, Jones B (2006) Automotive adsorption air conditioner powered by exhaust heat. Part 1: conceptual and embodiment design. Proc Inst Mech Eng Pt D: J Automobile Eng 220:959–972

  • Naddafi K, Hassanvand MS, Yunesian M, Momeniha F, Nabizadeh R, Faridi S, Gholampour A (2012) Health impact assessment of air pollution in megacity of Tehran, Iran. Iran J Environ Health Sci Eng 9:1–7. doi:10.1186/1735-2746-9-28

    Article  Google Scholar 

  • Naderi M, Rahro M (2012) Gasoline & diesel quality impacts on light & duty vehicle’s pollutants emissions. QM92/03/02/(U)/01

  • Ndetto EL, Matzarakis A (2015) Urban atmospheric environment and human biometeorological studies in Dar es Salaam, Tanzania. Air Qual, Atmos Health 8:175–191. doi:10.1007/s11869-014-0261-z

    Article  CAS  Google Scholar 

  • Ntziachristos L, Samaras Z, Eggleston S, Gorissen N, Hassel D, Hickman A (2000) COPERT III. Computer programme to calculate emissions from road transport, methodology and emission factors (version 2.1). European Energy Agency (EEA), Copenhagen

    Google Scholar 

  • Oanh NTK, Phuong MTT, Permadi DA (2012) Analysis of motorcycle fleet in Hanoi for estimation of air pollution emission and climate mitigation co-benefit of technology implementation. Atmos Environ 59:438–448

    Article  Google Scholar 

  • Pokharel SS, Bishop GA, Stedman DH, Slott R (2003) Emissions reductions as a result of automobile improvement. Environ Sci Technol 37:5097–5101. doi:10.1021/es026340x

    Article  CAS  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63:965–996. doi:10.1007/s11069-012-0217-2

    Article  Google Scholar 

  • Rakha H, Ding Y (2003) Impact of stops on vehicle fuel consumption and emissions. J Transp Eng 129:23–32. doi:10.1061/(ASCE)0733-947X(2003)129:1(23)

    Article  Google Scholar 

  • Saaty TL (1988) Multi-criteria decision-making: the analytic hierarchy process. University of Pittsburgh, Pittsburgh

  • Saaty TL (2001) Decision making in complex environments: the analytic network process for decision making with dependence and feedback. RWS, Pittsburgh

  • Saaty T, Vargas L (1990) How to make a decision: the analytic decision process. Eur J Oper Res 48:22–23

    Google Scholar 

  • Samaras Z (1999) Emissions reduction via improvements in engines and fuels: the Tehran case. J Urban Technol 6:63–87. doi:10.1080/10630739983740

    Article  Google Scholar 

  • Shahrabi M, Shojaei AA (2014) Application of FMEA and AHP in lean maintenance. Int J Mod Eng Sci 3:61–73

    Google Scholar 

  • Waked A, Afif C (2012) Emissions of air pollutants from road transport in Lebanon and other countries in the Middle East region. Atmos Environ 61:446–452. doi:10.1016/j.atmosenv.2012.07.064

    Article  CAS  Google Scholar 

  • Wang H, Chen C, Huang C, Fu L (2008) On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China. Sci Total Environ 398:60–67. doi:10.1016/j.scitotenv.2008.01.038

    Article  CAS  Google Scholar 

  • Yadav V, Arora M (2012) The product purchase intentions in Facebook using analytical hierarchical process. Radix Int J Econ Bus Manag 1:26–54

    Google Scholar 

  • Yazdi MN, Delavarrafiee M, Arhami M (2015) Evaluating near highway air pollutant levels and estimating emission factors: case study of Tehran, Iran. Sci Total Environ 538:375–384. doi:10.1016/j.scitotenv.2015.07.141

    Article  Google Scholar 

  • Youssefi S, Waring M (2012) Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments. Indoor Air 22:415–426. doi:10.1111/j.1600-0668.2012.00776.x

    Article  CAS  Google Scholar 

  • Youssefi S, Waring MS (2014) Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios. Environ Sci Technol 48:7899–7908. doi:10.1021/es5009906

    Article  CAS  Google Scholar 

  • Youssefi S, Waring MS (2015) Indoor transient SOA formation from ozone α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis. Atmos Environ 112:106–115. doi:10.1016/j.atmosenv.2015.04.001

    Article  CAS  Google Scholar 

  • Zamboni G, Capobianco M, Daminelli E (2009) Estimation of road vehicle exhaust emissions from 1992 to 2010 and comparison with air quality measurements in Genoa, Italy. Atmos Environ 43:1086–1092. doi:10.1016/j.atmosenv.2008.11.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Delkash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delkash, M., Mir, H.M. Examining some potential actions in mitigating gaseous emissions from vehicles, case study: Tehran. Air Qual Atmos Health 9, 909–921 (2016). https://doi.org/10.1007/s11869-016-0400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-016-0400-9

Keywords

Navigation